Условие задачи:
Окружность вписана в квадрат. Найти площадь закрашенной области, если сторона квадрата равна 2 м.
Дано:
Сторона квадрата, a = 2 м
Пояснение к рисунку:
O - центр окружности
R - радиус окружности
D - диаметр окружности
Найти площадь закрашенной области: S
Решение
Площадь искомой области можно выразить как разницу между площадью квадрата и площадью круга
Площадь квадрата
Площадь круга
Неизвестен радиус окружности. Из рисунка видно, что сторона квадрата равна диаметру окружности и соответственно удвоенному радиусу
Выразим радиус окружности через сторону квадрата и подставив значение, получим радиус окружности.
Формула площади искомой области на основании выкладок выше, будет выглядеть следующим образом.
Подставив уже известные значения стороны квадрата и радиуса окружности, получаем.
Ответ:
Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14
Если в уже полученное выражение подставить формулу площади круга выраженную через сторону квадрата и преобразовав, получим следующую формулу, в которой площадь закрашенной области, будет сразу выражена через сторону квадрата.
Проверим, подставив наше значение.
Калькулятор для расчета площади закрашенной области